Synthesis of 2,3-, 2,5-, and 2,6-Dibromobenzobarrelenes High Temperature Bromination 1

Osman Çakmak and Metin Balcı*

Atatürk University, Department of Chemistry, Faculty of Science, Erzurum Turkey

Abstract: 2-Bromobenzobarrelene 7 has been brominated at 78 oC. Four bromine addition products 8, 9, 10, 11 with bicyclo [2.2.2]skeleton have been isolated whose structures were established on the basis of the ¹H- and ¹³C-NMR spectral measurements. The dehydrobromination of 8, 9, 10, and 11 was achieved using potassium tert.-Butoxide and sodium methoxide to give 2,3-, 2.4-, and 2,5-dibromobenzobarrelenes, respectively.

Interest in our laboratory has been heavily focused on synthesis of disubstituted benzobarrelene derivatives **1**, **2**, and **3**, in order to study the effect of the different substituents¹ in the same molecule on the course of the di- π -methane rearrangement². For this reason we treate 2-bromobenzobarrelene^{1c,3} with bromine at O °C⁴ and obtained instead of the desired nonrearranged products only products with skeleton rearrangement.

In the course of bromination⁵ of 3-bromo-6,7-benzobicyclo[3.2.1]octa- 2,6-diene, we noticed that the reaction temperature has a dramatically influence on the product distribution. The bromination of 4 at -50 °C has been found to give only rearranged product, the tribromide 5 via Wagner-Meerwein rearrangement with accompanying aryl migration. The bromination at O °C produced nonrearranged tribromides besides the rearranged product (Scheme 1). In the light of this observation we treated 7 with bromine at high temperature (78 °C). In this paper we describe our results.

Scheme 1

To a refluxing solution of 7 in CCl₄ was added a hot solution of bromine in CCl₄ in one portion. The colour of the bromine dissapeared immediately. After silica gel chromatography followed by fractional crystallization we isolated four products **8**, **9**, **10**, and **11** with non-rearranged skeleton (Scheme 2). ¹H- and ¹³C-NMR studies have permitted structural assignments⁶. Furthermore, product analysis has indicated clearly that bromine has added to the both double bond in a ratio of approximately 1:1. By the addition of bromine to 7 at 0 °C we observed completely regioselectivity. However, by the reaction at 78 °C we can not see any regio- and stereo-selectivity. The formation of both stereoisomers **8** and **9** (**10** and **11**) does not give any indication of which of the two competing modes of endo- and exo-attack is preferred, since both isomers can be formed from endo-attack as well as from exo-attack. The different product distribution at 0 °C and 78 °C results from the life-time of the first formed intermediate, the bromonium ion. At 0 °C the life time of the intermediate is increased so that the rearrangement can take place completely. However at 78 °C bromide ion can attack the intermediate before rearrangement since the life-time of the intermediate is decreased.

Scheme 2

	¹ H-NMR	¹³ C-NMR	IR
	6.96-7.22 AA'BB'-system (4H, aromatic), 6.93 AA'- part, 4.95, BB'-part	144.54, 138.69, 129.41 124.58, 122.61, 58.56	1610, 1460,1450, 1310 1260, 1215, 1185, 1060 980, 910
2 ar	6.94-7.3 m, (4H, arom.) 6.84 dd, 4.76, s, 4.75 dd	144.60, 144.41, 136.80 130.98, 125.13, 124.17 123.15, 122.39, 66.28 51.27	3070, 2980, 1580, 1460 1450, 1260, 1200, 1190 1130, 1090, 985
	6,91-7,16 AA'BB'-system (4H,aromatic),6.83 AA'XX' system 4.63	144.48, 136.30, 132.44 124.67, 122.77, 59.2	3010, 2980, 1610, 1460 1450, 1260, 1250, 1240 1130

Table 1. Selected Physical data of 1, 2, and 3.

In the final step, the double dehydrobromination of a mixture consisting of 8 and 9 (or pure 8 and 9) was acchieved with efficiency by using potassium tert.-buthoxide. With 2 mol of potassium tert.-butoxide we isolated a mixture of dibrombenzobarrelenes 2 and 3 in a yield of 80% in a ratio of 1:1 which was separated by fractional crystallization (Scheme 3). The proton and carbon NMR spectra of 3 showed the expected symmetry in the molecule. The ¹H-NMR spectrum consists of an AA'BB' system (aromatic protons) and AA'XX' system arising from the bridgehead and the double bohd protons. A six-line ¹³C-NMR spectrum is in good agreement with the structure 3. The ¹H-NMR spectrum of 2 was also in agreement with the symmetry in the molecule. Dehydrobromination of 10 and 11 with sodium methoxide provided 1 in a yield of 98%.

Scheme 3

Acknowledgement: The authors are indebted to Atatürk University, Department of Chemistry for financial support of this work and Prof. Dr. Waldemar Adam (University of Würzburg) for 250 MHz ¹H-NMR and 62.5 MHz ¹³C-NMR spectra.

REFERENCES

- 1) a) Bender, C. O.; Shugarman, S. S. J. Chem. Soc. Chem. Commun. 1974, 934.
 - b) Bender, C. O.; King-Brown, E. H. J. Chem. Soc. Chem. Commun. 1976, 878.
 - c) Bender, C. O.; Brooks, D. W.; Cheng, W.; Dolman, D; O'Shea, S. F.; Shugarman, S. S. Can. J. Chem. 1978, 56, 3029.
- 2) Hixon, S. S.; Mariano, P. S.; Zimmerman, H. E. Chem. Rev. 1973, 73, 531.
- 3) Balcı, M.; Çakmak, O.; Harmandar, M. Tetrahedron Lett. 1985, 26, 5469
- 4) Çakmak, O.; Hökelek, T. Büyükgüngör, O.; Balcı, M. Tetrahedron Lett. preceeding paper
- 5) a) Harmandar, M.; Balcı, M. Tetrahedron Lett. 1985, 26, 5465.
 - b) Balcı, M.; Harmandar, M. Tetrahedron 1988, 3645.
- 6) Full-details of the NMR spectra will be published in a full-paper.
- 7) Çakmak, O.; Balcı, M. J. Org. Chem. 1989, 54, 181.

(Received in UK 5 March 1990)